
Building the Note Pad application
for Android

Trevin Beattie

Copyleft c© 2011—2025 Trevin Beattie

Note Pad for Android is distributed under the terms of the Gnu Public
License, version 3.0.

[Encryption code]: Copyright c© 2000-2013 The Legion of the
Bouncy Castle Inc. (http://www.bouncycastle.org)

Permission is hereby granted, free of charge, to any person obtain-
ing a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission notice shall be in-
cluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

Some of the images used by the program are reproduced from work created
and shared by the Android Open Source Project and used according to the
terms described in the Creative Commons 2.5 Attribution License.

This manual and other images used by the program were created by Trevin
Beattie and are shared according to the terms described in the Creative
Commons 3.0 Attribution-ShareAlike License.

http://www.bouncycastle.org

i

Table of Contents

1 Code Organization . 1
1.1 Encryption Code . 1

2 Building from the Source . 2
2.1 Development Environment . 2
2.2 Generating Icons . 3
2.3 Testing . 4

2.3.1 Using Virtual Devices . 4
2.3.2 Enabling USB Debugging . 5
2.3.3 Debugging the Application . 5

2.4 Generating the Application Package (APK) . 6
2.5 Generating Documentation . 6

3 To Do . 7

1

1 Code Organization

As with all Android projects, the AndroidManifest.xml file under
app/src/main/ describes the main components of the application — its
activities, provider, and services.

There are two major packages for the code in app/src/main/java/: the
cryptography code and the main application. All code is under the top-level
package com.xmission.trevin.android, with the cryptography code in the
crypto subpackage and the rest of the application in notes.

Resources used by the application (UI layout, language-dependent
strings, icons, etc.) are under app/src/main/res/. See Section 2.2
[Generating Icons], page 3, for details on how the icons are rendered.

1.1 Encryption Code
When the user sets a password for private notes, the application turns the
password into an encryption key using a Password-Based Key Derivation
Function (PBKDF (https://en.wikipedia.org/wiki/PBKDF2)). Android
4.4 (KitKat) introduced a breaking change to the SecretKeyFactory
resulting in a different key being generated for the same password compared
to the key generated in Android 4.3 (Jellybean) and earlier (see “Changes to
the SecretKeyFactory API in Android 4.4 (https://android-developers.
googleblog.com/2013/12/changes-to-secretkeyfactory-api-in.
html)”). In addition, Android 2.2 (Froyo) had no support for the
PBKDF2WithHmacSHA1 algorithm. To allow the password to work for both
local data and backup files across all supported Android versions, the app
uses a copy of parts of BouncyCastle’s encryption library. This code must
remain unchanged in all versions of the Note Pad app.

https://en.wikipedia.org/wiki/PBKDF2
https://android-developers.googleblog.com/2013/12/changes-to-secretkeyfactory-api-in.html
https://android-developers.googleblog.com/2013/12/changes-to-secretkeyfactory-api-in.html
https://android-developers.googleblog.com/2013/12/changes-to-secretkeyfactory-api-in.html
https://android-developers.googleblog.com/2013/12/changes-to-secretkeyfactory-api-in.html

2

2 Building from the Source

When making any changes to the code, you also need to change the release
date in the “About. . . ” dialog (res/values/strings.xml: InfoPopupText)
as well as the application’s internal version number (AndroidManafest.xml:
android:versionCode and android:versionName).

2.1 Development Environment
Building the application .apk was originally done up until 2014 using:

• A Java 1.6 compiler

• Eclipse integrated development environment (IDE)

• The Android software development kit (SDK) release 12.

To build the old code (up to version 1.3.0) on a newer system requires
a few different tools, but not too modern. The following development envi-
ronment was set up and tested in 2025 on Fedora Linux 40 with only minor
bug fixes to the code:

• Java (1.)8 (Do not use a newer version, as Gradle 3.5 is not compatible
with Java 11 or higher.)

• Android Studio 2.3.3, downloaded from the archive (https://
developer.android.com/studio/archive).

• Gradle 3.5, installed by setting up the Gradle Wrapper for the project
and then modifying gradle/wrapper/gradle-wrapper.properties to
set distributionUrl to https\://services.gradle.org/
distributions/gradle-3.5-all.zip.

• The Android Gradle Plugin version 2.3.3, which had to be downloaded
along with most of its dependencies from a 3rd-party mirror https://
repository.axelor.com/nexus/service/rest/repository/browse/
maven-public/ as it does not exist in Maven Central nor in Google’s
Maven repository.

The following development environment was used for version 1.3.1:

• Java (1.)8 (Do not use a newer version, as Gradle 4.1 is not compatible
with Java 11 or higher.)

• Android Studio 3.0, downloaded from the archive (https://
developer.android.com/studio/archive).

• Gradle 4.1, installed by running ./gradlew wrapper --gradle-
version=4.1.

• The Android Gradle Plugin version 3.0.0, available in Maven Central.

See http://developer.android.com/sdk/index.html for information
on how to set up a project using the Android SDK.

https://developer.android.com/studio/archive
https://developer.android.com/studio/archive
https{@fam =@ttfam @def rm{tt}@ttfont @backslashcurfont }://services.gradle.org/distributions/gradle-3.5-all.zip
https{@fam =@ttfam @def rm{tt}@ttfont @backslashcurfont }://services.gradle.org/distributions/gradle-3.5-all.zip
https://repository.axelor.com/nexus/service/rest/repository/browse/maven-public/
https://repository.axelor.com/nexus/service/rest/repository/browse/maven-public/
https://repository.axelor.com/nexus/service/rest/repository/browse/maven-public/
https://developer.android.com/studio/archive
https://developer.android.com/studio/archive
http://developer.android.com/sdk/index.html

Chapter 2: Building from the Source 3

2.2 Generating Icons
The main application icon was drawn by hand in the GIMP, and can be found
in IconMaster.xcf. For Android Nougat and earlier, this raster image is
scaled down from 384 × 384 to about 1

2
inch on screen: a 60 × 60 icon in

res/drawable-ldpi/icon.png, 80 × 80 in res/drawable-mdpi/icon.png,
120×120 in res/drawable-hdpi/icon.png, and 160×160 in res/drawable-
xhdpi/icon.png.

Android Oreo introduced “adaptive icons”, so the usual icon — which
has the natural rectangular shape of a piece of paper — had to be squeezed
down to fit into a mask that can be anything from a rounded squircle to
a circle. To generate the various sizes of this icon, the canvas has to be
enlarged to 588 × 588 and then scaled back down to 80 × 80, 120 × 120,
160 × 160, and 240 × 240 for the various pixel densities in res/drawable-
*dpi/icon_foreground.png. In addition, a background image has to be
provided in res/drawable-*dpi/icon_background.png.� �

Reproducibility Issues

Some publishing systems (e.g. F-Droid) require that compiled code and
generated / modified resources be kept exactly the same across any build
environment. When writing PNG images, applications tend to use the sys-
tem’s “zlib” compression library, which is ordinarily the one provided from
zlib.net. Some systems may replace this library with an alternative such
as “zlib-ng”; in order to get consistent output, you may need to install
“zlib” separately and have this library loaded when running Android Stu-
dio, ‘./gradlew’, and any other application you use to create PNG images.
For example, the following may be used from the command line:

export LD_PRELOAD=/usr/local/lib/libz.so.1

which will cause the application to use the zlib implementation in
/usr/local/lib/ instead of the default implementation in /usr/lib/ or
/usr/lib64/.
 	� �

EXIF Prohibition

Some publishing platforms such as F-Droid forbid any EXIF metadata
in images. The exiftool (https://exiftool.org/) utility may be used
to strip this metadata from your images:

exiftool -all= drawable*/*.png

The tool renames the original files to e.g. abc.png_original.
 	

https://exiftool.org/

Chapter 2: Building from the Source 4

2.3 Testing
Currently, there are no automated tests for the source code; testing must
be done by running the application either on an emulator or real Android
device which has USB Debugging enabled.

2.3.1 Using Virtual Devices

If you want to test the application on different versions of Android or different
types of devices than you have physical devices for (or don’t want to use real
devices for testing), you will need to configure emulators using the Android
Virtual Device Manager.

In Android Studio 2.3, go to Tools → Android → AVD Manager to open
the Android Virtual Device Manager. In Android Studio 2024, this is at
Tools→ Device Manager. Click on “Create Virtual Device” (or the ‘+’ icon)
to add a new emulator. On the first page you will select the type and screen
size of the device, e.g. small phone or large tablet, along with its pixel
resolution.

On the next page choose which version of Android the emulator will
run. The ABI determines what type of CPU the system will run on: “arm”,
“arm64”, “x86”, or “x86 64”. In order for the emulator to run the ABI must
match (or be compatible with) your computer’s host CPU; for example, an
“arm” image will not run on an “x86 64” computer. (This means that you
cannot test on Android 2.2 (Froyo) or earlier in emulation, since there are
no x86 builds for those versions of Andriod.)

The system image list shows both the Android version (e.g. 8.1), code
name (e.g. Oreo), and API level (e.g. 27). You should create at least
enough emulators to cover the minimum and target SDK versions specified
in AndroidManifest.xml, and ideally the latest release of Android and a
few intermediate versions to make sure the app is compatible across a wide
range of device ages. It is highly recommended to test against the following
API’s, since the code has branches that follow different paths for each of
these versions:

• Froyo (Android 2.2, API 8), which is the current minimum version

• Gingerbread (Android 2.3, API 9–10) through Ice Cream Sandwich (An-
droid 4.0, API 14–15)

• Jelly Bean (Android 4.1, API 16) through Lollipop (Android 5.1, API
22)

• Marshmallow (Android 6, API 23) through Nougat (Android 7, API
24–25)

• Oreo (Android 8, API 26–27) through Red Velvet Cake (Android 11,
API 30)

• Snow Cone (Android 12, API 31–32), which is the current target version

Testing the following API’s is suggested to ensure compatibility with new
devices:

Chapter 2: Building from the Source 5

• Tiramisu (Android 13, API 33) through Vanilla Ice Cream (Android 15,
API 35)

• Baklava (Android 16, API 36) and up

On the last page finalize the details of the virtual device. Give it a
descriptive name which will distinguish it from other virtual devices; for
example, include the type/size of the device and the Android version and/or
API level. Under “Advanced Settings” you can configure the system’s CPU
and memory usage.

To run the virtual device for testing, click on its play button in the device
list. The emulated device should start up in a new window, acting as if it
were powered on.

2.3.2 Enabling USB Debugging

You will need to do this whether you are using a virtual or real device.

First, if your device runs Android 4.2 (Jelly Bean) or higher you will need
to enable Developer Mode. To do this, go to the system Settings and under
“About phone” look for the “Build number”. (This may be nested under
“Software information”.) Tap on the build number seven times; you should
see the message “You are now a developer!”.

Next find the “Developer options” in the system settings and scroll down
to the “USB debugging” switch. Turn that on whenever you need to test the
application, and plug the phone into your computer that is running Android
Studio. For security you should always turn this setting back off when you
are finished testing.

2.3.3 Debugging the Application

In Android Studio (with the NotePad project open), ensure you have a valid
build. If you will be testing on a virtual device be sure that the emulator
is running. See Section 2.3.1 [Using Virtual Devices], page 4, for how to
configure and run the virtual device.

Click the debug icon or go to Run → Debug ’app’, then in the “Select
Deployment Target” window select the device under “Connected Devices”.
If that section shows “<none>” then either the device is not running, not
connected (by a USB cable if it’s a physical device), doesn’t have USB de-
bugging enabled, or may have some other problem with it. When you click
“OK” then Studio should install the current app build onto the device and
launch it.

The “Android Monitor” panel may be used to view any log messages
from the application or the Android system. Be sure the correct device is
selected. When the application is started in debug mode, Android will wait
for Android Studio’s debugger to connect before the application will run so
that it can catch any startup errors. If the application crashes, check then
panel for an exception error message which should show the point in the
code where the error occurred.

Chapter 2: Building from the Source 6

2.4 Generating the Application Package (APK)
In Android Studio, click on the Build menu then “Build APK”. If there
were no errors, this should produce app/app-release.apk (in Android Stu-
dio 2.3) or app/release/app-release.apk (in Android Studio 2024). You
should rename this file to a more descriptive name like notepad-1.3.1.apk.

Alternatively from the command line, run the following commands:

./gradlew assembleRelease

This will produce an unsigned APK in app/build/outputs/apk/
release/app-release-unsigned.apk. To sign this, you will need to
locate the build tools for the version specified in app/build.gradle under
android.buildToolsVersion (if present; otherwise the most recent build
tools supported by the Android Gradle plugin). You will also need to know
where the keystore of your app signing key is located.

${BUILD_TOOLS_VERSION_DIRECTORY}/apksigner sign \
--alignment-preserved \
--ks ${ANDROID_KEYSTORE} --ks-key-alias ${SIGNING_KEY_ALIAS} \
--out app/${APP_NAME}-${VERSION}.apk \
app/build/outputs/apk/release/app-release-unsigned.apk

(The --alignment-preserved option is needed if you are using build
tools 35 or higher.)

2.5 Generating Documentation
Lastly, if you need to generate a new edition of this manual, you will
need texinfo (http://www.gnu.org/software/texinfo/) and texi2pdf
(https://www.gnu.org/software/texinfo/manual/texinfo/html_node/
Format-with-texi2dvi-or-texi2pdf.html) and/or texi2html (http://
www.nongnu.org/texi2html/).

To generate the manual in PDF, simply run:

texi2pdf NotePad.texinfo

To generate the manual in HTML, run:

texi2html --split node NotePad.texinfo

which will produce the manual under doc/NotePad/NotePad.html.

http://www.gnu.org/software/texinfo/
https://www.gnu.org/software/texinfo/manual/texinfo/html_node/Format-with-texi2dvi-or-texi2pdf.html
https://www.gnu.org/software/texinfo/manual/texinfo/html_node/Format-with-texi2dvi-or-texi2pdf.html
https://www.gnu.org/software/texinfo/manual/texinfo/html_node/Format-with-texi2dvi-or-texi2pdf.html
http://www.nongnu.org/texi2html/
http://www.nongnu.org/texi2html/

7

3 To Do

• Document how the code works

• Document the data structures

• Document the encryption algorithms

	1 Code Organization
	Encryption Code

	2 Building from the Source
	Development Environment
	Generating Icons
	Testing
	Using Virtual Devices
	Enabling USB Debugging
	Debugging the Application

	Generating the Application Package (APK)
	Generating Documentation

	3 To Do

